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A B S T R A C T   

MRI has firmly established itself as a mainstay for the detection, staging and surveillance of prostate cancer. 
Despite its success, prostate MRI continues to suffer from poor inter-reader variability and a low positive pre
dictive value. The recent emergence of Artificial Intelligence (AI) to potentially improve diagnostic performance 
shows great potential. Understanding and interpreting the AI landscape as well as ever-increasing research 
literature, however, is difficult. This is in part due to widely varying study design and reporting techniques. This 
paper aims to address this need by first outlining the different types of AI used for the detection and diagnosis of 
prostate cancer, next deciphering how data collection methods, statistical analysis metrics (such as ROC and 
FROC analysis) and end points/outcomes (lesion detection vs. case diagnosis) affect the performance and limit 
the ability to compare between studies. Finally, this work explores the need for appropriately enriched inves
tigational datasets and proper ground truth, and provides guidance on how to best conduct AI prostate MRI 
studies. Published in parallel, a clinical study applying this suggested study design was applied to review and 
report a multiple-reader multiple-case clinical study of 150 bi-parametric prostate MRI studies across nine 
readers, measuring physician performance both with and without the use of a recently FDA cleared Artificial 
Intelligence software.1   

MRI and PI-RADS 

Prostate cancer (PCa) is the most common non-cutaneous cancer in 
men in the United States and the second-leading cause of male cancer 
deaths. The natural history of this disease, however, is heterogeneous, 
and there is increasing evidence that many PCa are overtreated.2 As 
such, clinical focus has shifted to therapy directed at “clinically signif
icant” (i.e. life-threatening) cancers and active surveillance of more 
indolent cancers. Multiparametric prostate MRI (mpMRI) — chiefly 
T2-weighted (T2w), diffusion-weighted (DWI), and high temporal res
olution dynamic contrast-enhanced (DCE) sequences — initially devel
oped for loco-regional staging of PCa, has now been recognized as an 
invaluable tool for tumor detection, localization, characterization, risk 
stratification, surveillance, assessment of suspected recurrence, and 
image guidance for biopsy, surgery, focal therapy and radiation therapy 
of prostate cancer.3–5 Diagnostically, this has largely manifest as adop
tion of the international consensus recommendations for Prostate Im
aging Reporting and Data System (PI-RADS v2 and v2.1, hereafter 

referred to as PI-RADS v2), which have proven sensitivity and specificity 
for detecting clinically significant prostate cancer (csPCa), defined as 
Gleason score ≥ 7 on pathology/histology, and/or volume ≥ 0.5 mL, 
and/or extraprostatic extension (EPE).6,7 As such, PI-RADS v2 has been 
endorsed by the AUA (American Urological Association)8 and has gained 
acceptance by both radiologists and urologists as a preferred method of 
prostate MRI reporting.9 

Despite this enthusiasm, there is considerable inter-reader variability 
in PI-RADS v2 scoring,10,11 with a substantial learning curve as well as 
issues with zonal location of lesions.12,13 A recent study noted that 
readers missed approximately 16 % of CsPCA lesions at mp MR imaging, 
while underestimating lesion size in approximately 5 %.14 Additionally, 
false positives are commonly encountered. A multicenter study of 3449 
men undergoing prostate MRI and MRI-targeted biopsy across 26 cen
ters showed wide variation and an overall low positive predictive value 
of the PI-RADS v2.1: PPV of 35 % (95 % confidence interval [CI]: 27 %, 
43 %) for a PI-RADS score ≥ 3 and 49 % (95 % CI: 40 %, 58 %) for a score 
≥ 4.15 In the PRECISION trial3 biopsy proven CsPCA was greatest for a 

* Corresponding author. 
E-mail address: jeffrey.maki@cuanschutz.edu (J.H. Maki).  

Contents lists available at ScienceDirect 

Current Problems in Diagnostic Radiology 

journal homepage: www.cpdrjournal.com 

https://doi.org/10.1067/j.cpradiol.2024.04.002    

mailto:jeffrey.maki@cuanschutz.edu
www.sciencedirect.com/science/journal/03630188
https://www.cpdrjournal.com
https://doi.org/10.1067/j.cpradiol.2024.04.002
https://doi.org/10.1067/j.cpradiol.2024.04.002
https://doi.org/10.1067/j.cpradiol.2024.04.002


Current Problems in Diagnostic Radiology xxx (xxxx) xxx

2

PI-RADS v2 score of 5 (83 %), followed by a score of 4 (60 %) and score 
of 3 (12 %). On the other hand, the negative biopsy rate was highest for a 
PI-RADS v2 score of 3 (67 %), followed by score of 4 (31 %) and score of 
5 (6 %). 

Artificial intelligence for prostate MRI 

Given the challenging nature of correctly identifying and localizing 
csPCa, as well as the interobserver variability among radiologists, there 
is clear need to improve our diagnostic paradigm. One such avenue is to 
utilize artificial intelligence (AI). AI is a generalized term for a variety of 
techniques performed by machines that make use of prior knowledge, 
experience, goals and observations to create some sort of desired output, 
and includes the subsets of Machine Learning and Deep Learning.16 

As applied to prostate imaging, AI comes in several different forms, 
the most common of which target improved visualization and workflow 
enhancement. Multiple vendors offer products that combine AI and 
other algorithms to segment the prostate and calculate prostate volume 
and PSA density, register images between different acquisitions and/or 
planes, fuse different sequences such as diffusion or apparent diffusion 
coefficient (ADC) with more anatomic (e.g. T2w) images, overlay 
perfusion curves on other sequences and automatically measure and 
report user identified regions of concern (e.g. Quantib Prostate, Rot
terdam, the Netherlands; MIM Symphony Dx, Cleveland, OH; Philips/ 
DynaCAD, Best, the Netherlands, Ezra Plexo, New York City, NY). Such 
applications are useful, as accurate lesion segmentation and tumor 
volume measurement improves radiotherapy outcome, improves fusion 
biopsy results and are crucial for predicting positive surgical margins, 
biochemical recurrence, and post prostatectomy survival.17,18 While 
certainly important tools, these types of applications do not utilize AI to 
help detect or classify a lesion. 

More advanced AI algorithms are designed to detect, segment and 
characterize prostate abnormalities, potentially improving inter- 
observer variability in defining lesion borders and identifying smaller 
satellite lesions, which are almost uniformly missed.19–21 Per the defi
nitions of Cheng et al. as applied to AI, “classification” refers to assigning 
an entire image dataset or specific detected lesion either a binary (in our 
case typically “csPCa” or “non-csPCa”) or multiclass designation.22 Of 
note, “characterization” is often used interchangeably with “classifica
tion”, although more often refers to a multiclass rather than binary 
designation (e.g. assigning a PI-RADS 1-5 score is an example of radi
ologist generated multiclass lesion characterization). “Detection” refers 
to the identification and localization of the entity of interest, in this case 
csPCa, with more sophisticated iterations of AI providing true segmen
tations of the margins of the lesion(s) indicating level of suspicion.23,24 

It may be obvious that detection and classification are inherently 
intertwined. In the case of a radiologist reading a prostate MR, lesions 
are detected based on the perception of groups of imaging voxels, then 
cognitively processed, typically using classification schemes such as PI- 
RADS 2.1 to arrive at a combination of location and classification (e.g. 
PI-RADS 5, highly suspicious for malignancy). Thus the two go hand-in- 
hand, because detection is based on classification. Turning to AI, a basic 
pure detection algorithm could simply output a global binary decision or 
probability of “does this prostate have clinically significant cancer or 
not?”, however such non-localized (or case level) information is gener
ally less useful. With typical automated lesion detection, the algorithm 
effectively attempts to voxel-by-voxel classify an image dataset, with the 
classification being either binary or some form of multiclass designation 
(e.g. probability scale 0 – 1). If the algorithm is good at detecting cancer 
and ignoring non-cancerous lesions (high sensitivity and specificity), 
this inherently means it is good at classifying the underlying voxels, and 
groupings of similar suspicious voxels can be joined together to define 
and localize a particular lesion of a certain class or produce an anatomic 
probability map. Of course, how well either human or machine detec
tion/classification performs can only be determined when there is 
known biological truth (e.g. correlative pathology), and then typically 

assessed using metrics from the confusion matrix (e.g. sensitivity, 
specificity etc.), as each detected lesion is either a true positive or a true 
negative. 

Significant progress has been made on classification and detection 
using AI, however precise segmentation and associated volume mea
surement of detected lesions remain problematic, in part because of 
large interobserver variability, and in part due to a lack of comprehen
sive correlative imaging and pathologic data.16 Several recent AI studies 
using Random Forest or Convolutional Neural Network techniques to 
detect csPCa have achieved impressive AUC (area under the receiver 
operator curve) values, ranging from 0.90 – 0.97.23,25–28 Just what 
exactly “AUC” is, how it is used and its limitations will be discussed 
shortly. Ground truth for these studies either used the open source 
Cancer Imaging Archive prostate imaging with pathologic 
correlation29–31 or a combination of experienced radiology readers and 
biopsy data. How such “ground truth” is established is another impor
tant consideration when evaluating algorithm performance. Another 
diagnostic approach is to use AI detection algorithms in combination 
with radiologist interpretations (e.g. PI-RADS scoring), with several 
studies demonstrating that the combination of AI detection algorithms 
and radiologist interpretation offers significantly improved AUC over 
radiologist interpretations alone.21,25,32,33 

AI software, as well as more simple CAD image display software 
applications, are both considered “Medical Devices”. These are classified 
by the FDA in increasing order of potential risk as Class I - III, and as such 
require appropriate FDA clearance. The visualization and workflow 
focused algorithms as previously described belong to Class II, and are 
designated “Medical Image Management and Processing Systems” by the 
FDA Code of Federal Regulations 892.2050, described in part as “… 
advanced or complex image processing functions for image manipula
tion, enhancement, or quantification …”. With regards to the more 
“classification and detection” oriented AI algorithms, the FDA recog
nizes two designations; CADe (computer-aided detection used in con
current interpretation) and CADx (computer-aided diagnosis of diseases 
and their severity). Unless these algorithms have an equivalent predi
cate, they are typically Class III and must go through what is called the 
de novo certification pathway34 which involves careful scrutiny by the 
FDA, including rigorous performance tests to prove their effectiveness. 

Measuring performance in prostate cancer detection and 
diagnosis 

Confusion matrix and measurement accuracy 

The literature is rife with different metrics for describing the per
formance of radiologists or AI algorithms in diagnosing prostate cancer, 
and it is important to understand how these are generated and what 
their limitations are. The most basic assessment as applied to the binary 
question of “is there cancer” defines “diagnosis”, which is at the case 
level. This can be assessed based on the confusion matrix (Fig. 1), a 2 × 2 
table with the number of actual positive and actual negative cases on one 
axis, and the number of predicted positive and predicted negative cases 
on the other axis. As can be seen, the four boxes then contain the number 
of true positives (TP), true negatives (TN), false positives (FP) and false 
negatives (FN). From this, the standard statistical measures of sensitivity 
(or true positive rate), which is the TP divided by all positives = TP/(TP 
+ FN), and specificity (or true negative rate), which is the TN divided by 
all negatives = TN/(TN+FP), can be calculated. Many studies report 
sensitivity and specificity results for their readers or their AI algorithms, 
and in general a “good” reader or AI algorithm has a combination of high 
sensitivity and high specificity. Other metrics, such as positive and 
negative predictive value (PPV, NPV) are also often reported in studies, 
again derived from the confusion matrix, with PPV being TP divided by 
all those called positive = TP/(TP + FP) and NPV being TN divided by all 
those called negative = TN/(TN + FN). 
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ROC analyses 

Applying such metrics may seem straight-forward, however there are 
numerous nuances to consider. First, how do we make the binary deci
sion “positive” or “negative”? In fact, PI-RADS does NOT make such a 
decision as it is basically a five-point scale describing the likelihood of 
the patient having csPCa. Assume for a moment we call only PIRADS 5 
lesions “positive”. Provided we have ground truth (e.g. biopsy, explant 
pathology), we can then calculate sensitivity and specificity. Alterna
tively, we could choose to call PIRADS ≥ 4 lesions positive, yielding a 
different sensitivity and specificity, and so on for PIRADS ≥ 3 lesions and 
≥ 2 lesions. By doing this, we arrive at four different sensitivities and 
specificities corresponding to the different PIRADS thresholds. These 
values can be plotted on a Receiver Operating Characteristic curve 
(ROC), with the x axis (1 - Specificity) and the y axis Sensitivity, as 
shown for hypothetical data in Fig. 2. Note that by calling all PIRADS ≥
2 positive our sensitivity is very high, but at the price of low specificity. 
Conversely by only calling PIRADS 5 lesions positive, our specificity is 
high, but our sensitivity suffers. The diagonal line is known as the line of 
“no discrimination”, i.e. purely random; points to the left of this line are 
better than random, and points to the right worse than random, with top 
left (0,1) being perfect. With AI, there may be a more continuous vari
able characterizing the probability of prostate cancer, for example a 

continuous probability ranging from 0 to 1. Under these circumstances, 
many more points can be generated to fill-in the ROC curve such that it is 
smoother and can help to choose the optimum threshold given the 
desired outcome, or compare between different readers/techniques. A 
useful and often used numerical measurement of performance well 
suited to comparison is the “area under the (ROC) curve”, or AUC, 
illustrated as the shaded area in Fig. 2, which ranges from 0 to 1. AUC 
provides a more global picture of performance across differing thresh
olds. A perfect score would be 1.0, and the literature often describes 
prostate AI achieving AUC > 0.9; however, we will further discuss how 
these values are significantly influenced by the exact mechanism by 
which the ROC/AUCs were measured; meaning that the AUC values 
reported cannot be directly compared unless the exact methods are also 
shared and identical. 

PCA case level vs. lesion level diagnosis 

Another important consideration when examining how radiologists 
or algorithms perform has to do with how we define what constitutes a 
“correct” diagnosis? Considering only a single diagnosis for the case 
(case level diagnosis), calling a malignant lesion somewhere in the 
prostate is considered “correct” even if the identified lesion is a false 
positive and the true malignant lesion is totally missed. On the other 
hand, we could score each identified lesion individually and use this to 
determine our performance (lesion level diagnosis). How we chose to do 
our evaluation has the potential to become even more problematic with 
AI, which may perform the analysis on a pixel-by-pixel level. Should we 
somehow try to do the analysis of truth pixel-by-pixel (and is that even 
possible given what we have for truth?). Do we consider only the highest 
probability pixel in a “suspicious” region? Or a cluster of higher prob
abilities of a certain size? These are all different approaches that will 
lead to different results. 

Establishing ground truth and scoring system 

All of this introductory information has been provided as back
ground for how to evaluate and analyze a comparative study of radiol
ogists performing PIRADS reads with and without the help of a prostate 
CADe/CADx system. Given all of the variables discussed, it is clear that 
one must establish a solid clinical study so as to minimize measurement 
errors and follow a common standard. We believe the radiology com
munity thus far lacks such guidance that standardizes the methodologies 
for:  

• Measuring a non-continuous diagnostic system such as PI-RADS  
• Generating ROC curves with fixed numbers of evaluation points 

(pixels, 3D grids, PI-RADS sub-regions, etc.) 

Fig. 1. Confusion Matrix and the definitions for sensitivity, specificity, positive and negative predictive value.  

Fig. 2. Hypothetical example Receiver Operating Characteristic (ROC) curve. 
Area under the curve (AUC) represented by red shading. 
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• Determining how to evaluate reader and software detection of le
sions and defining what is truly a “hit” versus “miss” of a lesion based 
upon the granularity of division of the prostate, or “how you slice it”  

• How best to ethically establish and accurately place three- 
dimensional pathology ground truth points or volumes within the 
three-dimensional MRI data set  

• And perhaps most challenging of all, how to establish whether non- 
suspicious (unsampled) tissues and patient cases are truly negative 
for cancer 

Although the FDA provides guidance documents on Clinical Perfor
mance Assessment of CAD radiologic software, as well as guidance on 
establishing clinicals studies for Computer-assisted Detection Devices 
Applied to Radiology Images,35,36 the detailed methods outlined above 
are left to the submitting medical device companies. It is therefore 
highly unlikely that any two radiological CAD devices or peer-reviewed 
papers discussing the performance of a device can be directly compared 
because of the significantly different outcomes resulting from the 
non-standardization of the above methods and procedures. 

In a following section we offer alternatives to methods used for 
evaluation of AI software and suggestions for standardization, with 
supporting rationale. For instance, there are a multitude of ways in 
which one can set up an experiment to measure software and physician 
accuracy in both detection and diagnosis. As an example, simply 
changing the resolution of three-dimensional localization of specific 
lesions will impact the ROC curve. 

Prostate gland imaging classification 

Returning to the concept of a “correct” diagnosis, if we consider the 
prostate gland to be a single organ as defined by the FDA (CADx de
vices)36 it is given a single binary “case level” diagnosis (csPCa or not). 
This is similar to the intent of PI-RADS whereby the scoring system in
dicates the likelihood of csPCa within the case score. Alternatively, 
detection implies localization of some sort, combined with classification 
or assessment of disease within suspicious lesions (CADe devices) – 
again as defined by the FDA36 - and here variations can arise. To eval
uate detection accuracy the prostate can be divided into multiple seg
ments, ranging from right vs. left (n=2), to placing a variable sized 3D 
grid over the prostate (dozens to hundreds), all the way to individually 
classifying each pixel (thousands). In cases with multiple regions of 
suspected malignancy, classification might be based on only looking at 
the single most suspicious lesion such that there is only one correct or 
incorrect outcome, which again refers to case level diagnosis. Alterna
tively, it can evaluate any set number of suspected lesions on an indi
vidual basis, providing multiple datapoints per case. These datapoints 
then become the metric for measuring detection accuracy based upon 
radiologist or AI ability to accurately predict csPCa from the MRI by 
location. 

It follows that how such classification is defined, i.e. how the prostate 
is sub-divided (or “how you slice it”) and the way in which individual 
lesions are handled has a large bearing on the results, either as metrics of 
the confusion matrix such as sensitivity and specificity, or in the AUC or 
other analysis. As illustrated in Fig. 3, case level diagnosis can be 
misleading despite apparent good sensitivity and specificity, and could 
therefore lead to a biopsy of the wrong location. In this example, simply 
adding minimal localization (right vs. left) dramatically changes the 
sensitivity and specificity. Hence, evaluation without localization is 
rather pointless. 

Consider now an AI algorithm and two methods of evaluation; the 
first taking into consideration all points (pixels) in the prostate (“All 
Tissue”), the second only suspicious lesions for which ground truth bi
opsy data exists (“Lesions Only)”. As carefully explained in Fig. 4, the 
ROC curve in this hypothetical case yields an impressive-appearing AUC 
value of 0.933 for the all tissue analysis, however, the AUC value drops 
to a most unimpressive 0.512 for the lesions only analysis. This suggests 

that such a prediction model is unable to distinguish any difference 
between cancerous and benign lesions, thus providing little benefit to a 
radiologist. These seemingly discordant results are due to the generally 
large volume imbalance between normal and benign lesion tissue. So 
while this hypothetical algorithm is excellent at predicting normal 
background tissue as negative, of which there is plenty, it is ineffective 
at predicting benign lesion tissue as negative. This tissue volume 
imbalance causes the normal tissue performance to overshadow the 
benign lesion performance. By contrast, the lesion only evaluation more 
realistically reveals the algorithm’s ability to predict benign lesion tissue 
as negative. The lesion only evaluation, however, has its own caveat: it 
cannot account for false positives that may occur in regions of normal 
tissue. In other words, the reader or AI is only being evaluated at points 
of suspicion as deemed so by some sort of a-priori determination, such as 
a panel of experts; hence, all other points are ignored. This means that if 
a reader or AI algorithm is evaluated in this manner, neither would 
receive a false positive for indicating a suspicious region outside of those 
known a-priori. This simple example demonstrates how different eval
uation methods can have a dramatic effect on the conclusion, on even a 
single image slice from a single case. 

As an additional nuance, both AI and readers can be evaluated at the 
lesion level without either being aware of known suspicious lesions that 
have been biopsied for ground truth; however, in this case the scoring is 
accomplished by measuring the number of true lesions detected (True 
Positives) as well as the number of true lesions missed (False Negatives). 
This can be best characterized by the free response ROC (or FROC) 
curve, which will be discussed momentarily. 

Putting all this into perspective, we firmly believe the best and most 
stringent approach for evaluating an AI algorithm is a lesion level-based 
evaluation done at biopsy points, by far the harshest criteria. A related 
approach, recently used by Lay et al.23 is a "best-of-both-worlds" eval
uation method which systematically divides each slice of the prostate 
into a grid. A single prediction is calculated for each grid element using a 
pre-determined method (e.g. mean prediction value within the square), 
each grid element is compared with ground truth, and an ROC curve is 
generated. Fig. 5 demonstrates an example of this "grid" method with a 3 
mm grid superimposed on a probability map of csPCa. One further point 
to support the rationale for standardizing a method for measuring 
ROC/AUC is that if the grid size changes, this nominally affects the re
sults; meaning moving from pixel-by-pixel to larger grid to PI-RADS 
sub-volumes changes the resulting ROC and its associated AUC. This 
approach also has a “common sense” attribute of localizing a suspicious 
lesion within (in this case) a 3 mm x 3 mm x slice thickness volume. Of 
note, we do not recommend using PI-RADS sub-volumes for AI 

Fig. 3. Example diagram of benign and malignant prostate lesions. Considering 
a “case level” diagnosis, if a radiologist correctly calls the cancerous lesion 
positive and the benign lesion negative, this is 100 % sensitivity, 100 % speci
ficity. Conversely, if they call the benign lesion positive and the malignant 
lesion negative, the case level performance remains 100 % sensitivity, 100 % 
specificity despite completely incorrect localization. If the prostate were instead 
divided into left and right segments, the first interpretation again represents 
100 % sensitivity and 100 % specificity, while the second interpretation falls to 
0 % sensitivity and 0 % specificity. 
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algorithms because of the many challenges of dividing those 
sub-volumes as overlayed on each axial slice versus simply overlaying a 
grid without distinct identification of prostate zonal anatomy. 

Prostate gland ground truth 

Ground truth defined 

In order to score an MRI reader’s or AI algorithm’s accuracy in 
detection, one must have a solid ground truth. The FDA loosely defines 
acceptable ground truth as biological tissue and/or annual follow-up 
studies of PSA, PSA velocity or MRI.35 Per scientific consensus, posi
tive ground truth is only defined as those biopsies demonstrating Glea
son ≥ 7 histopathology, whereas negative ground truth is defined by 
those biopsies demonstrating Gleason < 7.37–39 Furthermore, a third 
“normal” cohort is defined as those patients considered non-suspicious 
for clinically significant cancer, such as those with normal PSA and/or 
digital rectal exam, acceptable PSA velocities and/or negative serial 

MRIs, and have never had a biopsy. 
Thus in order to evaluate reader and/or AI performance, accurately 

localized ground truth describing whether and where csPCa is present 
must be known. Perhaps the best “truth” is an explanted prostate gland 
after prostatectomy, which can be anatomically mapped to correlate 
with MR imaging.40–42 But given evolving non-surgical treatments, this 
is less available, with a larger fraction of pathologic disease confirma
tion coming from multi-sector trans-rectal US (TRUS) guided biopsy, 
targeted biopsy or trans-perineal mapping biopsy (TPMB). Regardless of 
technique, knowing exactly where in the gland the biopsy occurred and 
exactly how it correlates to the MR image is inexact at best. In general, if 
a positive biopsy site is believed to be in the same sector of a suspected 
lesion by MR, that is generally acceptable for “ground truth”. Clearly this 
has limitations, and it is important to recognize these when attempting 
to quantify radiologist or AI performance at lesion classification. 

Proposed guidelines for prostate AI studies 

While other more generalized guidelines have been proposed for 
how to conduct and report medical AI studies43 a central thesis of this 
work is to propose a standardized way of conducting and reporting 
CADe/CADx prostate studies, as no such guidelines exist. Accordingly, 
and with regard to the nuances of evaluation just discussed, we propose 
below a detailed standardized methodology geared toward investigators 
conducting a clinical study to evaluate human readers, an AI algorithm, 
and human readers assisted by an AI algorithm. Adherence to such 
guidelines will make performance comparisons between studies more 
meaningful. 

Ground truth 

As just discussed, establishing the ground truth for each patient is 
required to assess the true performance of the readers or an AI algo
rithm. Thus for MRI-positive patients, we recommend targeted biopsy of 
suspicious lesions, with an expert then annotating regions correspond
ing to the biopsied suspicious lesions. This method, however, does have 
the disadvantage of not confirming tissues outside the biopsied lesions 

Fig. 4. Depiction of a prostate slice demonstrating two “suspicious” lesions (a), one clinically significant cancer, one benign; both based on ground truth. Hypo
thetical AI model predicting the likelihood of cancer for each pixel (b), with brighter signal (lighter gray) indicating increased likelihood of cancer (in this example is 
similar for both lesions), and darker signal in regions representing normal tissue. When the entirety of the prostate is included in the evaluation (all tissue, pixel-by- 
pixel analysis) (c), the majority of pixels have the correct diagnosis (normal or benign; true negative), with a much smaller number of pixels correctly classified csPCa 
(orange lesion on left; true positive), and a similar small number of pixels incorrectly classified as csPCa (blue lesion on right, false positive). The resultant (green) (all 
tissue) ROC curve (e) and its AUC of 0.933 suggests that the cancer prediction model is excellent. If, however, we evaluate only pixels corresponding to suspicious 
lesions (lesions only) (d), many fewer pixels are evaluated, with approximately 50 % being true positive (orange) and 50 % being false positive (blue). Now only 
about half of the included voxels are correctly classified, and the (red) (lesions only) ROC curve (e) and its AUC of 0.512 indicate that this prediction model is not able 
to distinguish any difference between cancerous and benign lesions. 

Fig. 5. Example of ProstatID color-coded overlay on a T2w slice through the 
mid prostate. Color mapping such that green predicts benign tissue, with the 
color spectrum toward bright red predicting the highest likelihood of clinically 
significant cancer. Superimposed 3 mm grid. 
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are truly negative. Another acceptable option is the systematic TRUS or 
trans-perineal biopsy, which by its nature does sample tissues outside 
the suspicious lesions. Disadvantages of such systematic biopsies are 
that suspicious lesions may not be adequately sampled, and the exact 
locations of tissues sampling may be difficult to establish. For MRI- 
negative patients, we recommend surveillance using PSA or 1-year 
follow-up MRI to confirm true negative status. To reduce the variation 
that comes from the subjectivity of MRI interpretation, it is recom
mended that a panel of experts decide whether a case is MRI-positive or 
negative. While no established criteria exists for defining such an 
“expert panel”, we suggest this be consensus agreement of at least two 
radiologists having established and acknowledged expertise in prostate 
imaging, who are currently interpreting a high volume of prostate MRI 
exams and are involved with multi-disciplinary teams that review and 
discuss prostate MR-pathologic correlation. Regardless, the makeup and 
qualifications of such a panel should be clearly stated. 

Patient/case selection 

It is important to create and use an “enriched” dataset for analysis, 
meaning a relatively equal balance of positive and negative cases, 
randomly sampled from within stratified groups based on a variable 
such as Gleason score, ISUP grading classification44 or no csPCa, and 
containing MRI-negative cases with negative follow-up, MRI-positive 
cases with negative follow-up, and MRI-positive cases with positive 
follow-up. The data should ideally come from multiple sites and multiple 
MR machine types. These factors allow for easier post-analysis of biases 
and can better assess clinical performance across a spectrum of disease. 
This dataset needs to be carefully correlated with pathologic data and/or 
negative follow up data, with a description of how this correlation is 
performed and defining what is truly a “hit” versus “miss” of a lesion 
based upon the granularity of division of the prostate. 

Performance evaluation 

For evaluating the performance of human readers as well as AI, we 
recommend employing two methods; a modified “case-level” evaluation 
using PI-RADs scoring for diagnostic performance, and a “lesion-level” 
evaluation for detection performance. 

Diagnostic performance 
We recommend a multiple-reader, multiple-case (MRMC) ROC 

analysis using a modified “case-level” evaluation, meaning one patient 
case receiving one prediction employing the PI-RADS scoring system 
wherein each suspect lesion is evaluated and the case PI-RADS score is 
represented by the highest suspect lesion PI-RADS score. For this to be 
statistically meaningful, there must be sufficient numbers of cases with 
the three cohorts of suspicious positive (biopsy), suspicious negative 
(biopsy) and normal patients, as well as sufficient number of partici
pating physician readers so that the statistical power is adequate.45 In 
the context of prostate MRI, a single PI-RADS rating should be assigned 
by the reader for each case. An ROC curve can be constructed for each 
reader using the PI-RADS prediction and ground truth (as in Fig. 2). To 
compare two different reading methods (e.g., a read using standard 
PI-RADS v2 methods vs. a read assisted by AI), the difference in ROC 
AUC can be calculated and tested for statistical significance. Although 
this method is limited from the generalization affect described above 
using simple case scores, it does employ the ground truth data of all 
biopsied lesions, and therefore a truthed score sheet and case score with 
which to compare. More importantly, measuring changes in AUC for 
reader performance without and with the use of AI will demonstrate the 
usefulness of the AI. 

Detection performance 
The ability to detect a lesion is different from the ability to diagnose a 

patient. Thus, the method for evaluating detection performance should 

likewise be different. We suggest for this purpose the free-response ROC 
(FROC) analysis.46 FROC is an adaptation of ROC for evaluating the 
performance of both detection and classification in a free-response 
system. In context of prostate MRI, the task is the localization and 
classification of cancerous lesions in the image volume. A single case 
may have no, one, or multiple cancerous lesions. The FROC curve is a 
plot of sensitivity versus false positives per patient, exemplified in Fig. 6. 

Furthermore, a method is required to capture whether or not a reader 
“detects” a lesion, along with assigning each detection a cancer likeli
hood prediction. We recommend the simple approach of collecting 
categorical location descriptors from the readers for each detected 
lesion, which is then correlated with ground truth. If ground truth for 
this location is positive and a reader provides this same description 
while interpreting the case, then that reader has successfully detected 
the lesion. During an experiment, readers should provide such location 
descriptors along with their PI-RADS assessment for each described 
lesion. A FROC curve can then be constructed for each reader based on 
ground truth, the reader’s description of lesion locations, and the 
reader’s PI-RADS prediction. Similar to ROC analysis comparing two 
different reading methods, any difference in FROC curves can be 
calculated and tested for statistical significance.47 Thus, rather than 
comparing ROC AUC, the weighted alternative FROC (wAFROC) metric 
(represented by the variable θ) can be used. The wAFROC metric is a 
measure of detection performance and can be considered analogous to 
the area under the ROC curve. 

Standalone performance of AI 

Because an AI algorithm is intended to mimic the abilities of the 
human analyst, the standalone performance of the AI must also be 
evaluated. Referring back to the issues that arise from different evalu
ation methods as previously discussed (Fig. 4), we recommend an AI 
algorithm be evaluated by two different ROC analyses methods: 1) an 
all-tissue analysis and 2) a lesion-level analysis. The all-tissue analysis 
will reveal the ability of the AI algorithm to distinguish cancerous tissues 
from all other tissues. An algorithm that produces many false positive 
predictions in normal tissues will have poor performance in such an 
analysis. The lesion-level analysis, on the other hand, will reveal the 
ability of the AI to distinguish cancerous tissues from benign tissues, 
which is the most difficult task. The lesion-level analysis should be done 
by evaluating the predictions of the AI at all suspicious lesions. Both of 
these analyses can be performed using either a pixel-by-pixel or grid- 

Fig. 6. Hypothetical example Free-Response Receiver Operating Characteristic 
(FROC) curve. This can be characterized by the weighted alternative FROC 
(wAFROC) metric θ. 
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based method, and the specifics of how this was performed should be 
detailed. 

Summary of Proposed Guidelines for Prostate AI Studies  

• Biologic Truth: carefully correlate imaging data with pathology 
and/or negative follow up data, describe how this correlation is 
performed and define what is truly a lesion “hit” versus “miss” based 
upon the granularity of division  
○ Specifically define the degree of granularity (or grid size) of the 

CADe/CADx algorithm in calculating ROC curves  
• Patient/Case Selection: clinical performance cases should come 

from an enriched dataset drawn from multiple machine types, with 
random sampling from MRI-negative cases with negative follow-up, 
MRI-positive cases with negative follow-up, and MRI-positive cases 
with positive follow-up  
○ Clearly define the threshold for clinically significant cancer - 

typically Gleason score ≥ 7 – or if any other grading of disease 
severity is employed, this should be so stated  

• Performance Evaluation:  
○ MR interpretation: clearly define how reader MRI interpretation 

was performed – e.g. PI-RADS, recommendation for biopsy etc.  
○ AI assessment type: clearly define whether CADe/CADx standalone 

assessment (e.g. ROC) is on a case level or a lesion only level, and 
report both  

○ Free Response ROC: conduct a CADe/CADx standalone weighted 
FROC performance analysis on the ground truth biopsy points  

○ Impact of AI on reader performance: conduct a comparison of 
reader performance, both in terms of Diagnostic Performance and 
Detection Performance with and without aid of CADe/CADx, with 
additional recommendations - 

▪ Employ a statistically relevant number of readers, pref
erably with varying degrees of experience  

▪ Reader analysis should be multiple-reader multiple-case 
(MRMC) at the modified case level, clearly defining the 
PI-RADS (or other) criteria used for establishing the case- 
level diagnostic performance of the readers via construc
tion of the ROC curve  

▪ Conduct a comparative FROC performance of the MRMC 
readers at the biopsy data points with and without the use 
of CADe/CADx without the reader’s knowledge of the 
location and status of ground truth lesions to establish 
detection performance - note this measurement is exclu
sively at those biopsy points with a-priori ground truth 
data, and not at all points (pixels) within the prostate 

Summary 

AI applications, including prostate CADe and CADx are finding their 
way into radiologist’s diagnostic workflow. In order to best compare 
between and utilize these new technologies, it is important to under
stand how AI results or FDA approved products are reported and 
analyzed, as there can be considerable variability in study design and 
implementation, which can in turn greatly impact perceived perfor
mance. Furthermore, it is critical that AI researchers use standardized 
and transparent evaluation methods to allow for more meaningful inter- 
study comparisons. In this light, this paper addressed many of the more 
important considerations regarding interpreting, designing and 
comparing AI studies in order to better prepare the radiologist to put AI 
algorithms and studies into appropriate context, and provide the AI 
researcher with a suggested set of standardized research considerations 
and guidelines. 
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