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A B S T R A C T   

Introduction: The construction and results of a multiple-reader multiple-case prostate MRI study are described and 
reported to illustrate recommendations for how to standardize artificial intelligence (AI) prostate studies per the 
review constituting Part I1. 
Methods: Our previously reported approach was applied to review and report an IRB approved, HIPAA compliant 
multiple-reader multiple-case clinical study of 150 bi-parametric prostate MRI studies across 9 readers, 
measuring physician performance both with and without the use of the recently FDA cleared CADe/CADx 
software ProstatID. 
Results: Unassisted reader AUC values ranged from 0.418 – 0.759, with AI assisted AUC values ranging from 
0.507 – 0.787. This represented a statistically significant AUC improvement of 0.045 (α = 0.05). A free-response 
ROC (FROC) analysis similarly demonstrated a statistically significant increase in θ from 0.405 to 0.453 (α =
0.05). The standalone performance of ProstatID performed across all prostate tissues demonstrated an AUC of 
0.929, while the standalone lesion level performance of ProstatID at all biopsied locations achieved an AUC of 
0.710. 
Conclusion: This study applies and illustrates suggested reporting and standardization methods for prostate AI 
studies that will make it easier to understand, evaluate and compare between AI studies. Providing radiologists 
with the ProstatID CADe/CADx software significantly increased diagnostic performance as assessed by both ROC 
and free-response ROC metrics. Such algorithms have the potential to improve radiologist performance in the 
detection and localization of clinically significant prostate cancer.   

Introduction 

A concurrently published companion Part I review explores the 
current landscape of artificial intelligence (AI) as applied to prostate 
MRI, including how results are obtained, what they mean, and meth
odological recommended guidelines for standardizing how prostate AI 
studies are analyzed and reported.1 The main goal of this Part II 
manuscript is to demonstrate the application of the Part I recommen
dations in the context of a clinical study in an attempt to better stan
dardize how AI studies are constructed and reported, thereby making it 
more feasible to interpret and compare clinical performance between 
studies. These recommendations were summarized in Part I as1:  

• Biologic Truth: carefully correlate imaging data with pathology 
and/or negative follow up data, describe how this correlation is 
performed and define what is truly a lesion “hit” versus “miss” based 
upon the granularity of division  
○ Specifically define the degree of granularity (or grid size) of the 

CADe/CADx algorithm in calculating ROC curves  
• Patient/Case Selection: clinical performance cases should come 

from an enriched dataset drawn from multiple machine types, with 
random sampling from MRI-negative cases with negative follow-up, 
MRI-positive cases with negative follow-up, and MRI-positive cases 
with positive follow-up 
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○ Clearly define the threshold for clinically significant cancer - 
typically Gleason score ≥ 7 – or if any other grading of disease 
severity is employed, this should be so stated  

• Performance Evaluation:  
○ MR interpretation: clearly define how reader MRI interpretation 

was performed – e.g. PI-RADS, recommendation for biopsy etc.  
○ AI assessment type: clearly define whether CADe/CADx standalone 

assessment (e.g. ROC) is on a case level or a lesion only level, and 
report both  

○ Free Response ROC: conduct a CADe/CADx standalone weighted 
FROC performance analysis on the ground truth biopsy points  

○ Impact of AI on reader performance: conduct a comparison of 
reader performance, both in terms of Diagnostic Performance and 
Detection Performance with and without aid of CADe/CADx, with 
additional recommendations -  
- Employ a statistically relevant number of readers, preferably 

with varying degrees of experience  
- Reader analysis should be multiple-reader multiple-case 

(MRMC) at the modified case level, clearly defining the PI-RADS 
(or other) criteria used for establishing the case-level diagnostic 
performance of the readers via construction of the ROC curve  

- Conduct a comparative FROC performance of the MRMC readers 
at the biopsy data points with and without the use of CADe/CADx 
without the reader’s knowledge of the location and status of 
ground truth lesions to establish detection performance - note 
this measurement is exclusively at those biopsy points with a- 
priori ground truth data, and not at all points (pixels) within the 
prostate 

Methods 

A retrospective multiple-reader (n = 9), multiple-case (n = 150) 
(MRMC) clinical study was designed and implemented incorporating the 
above recommendations to illustrate the effect of a CADe/CADx AI al
gorithm on the performance of its intended users. The primary goal was 
to illustrate the effect of different evaluation methods (case level and 
lesion level analysis with ROC and FROC) on the clinical performance of 
CADe/CADx devices. This was assessed by determining whether 
providing radiologists with output from ProstatID (BOT IMAGE, Inc. 
Omaha, NE), a recently FDA-cleared CADe/CADx tool for prostate 
cancer detection and localization, leads to a statistically significant 
improvement in performance over the current standard of care using 
suggested analysis techniques. Secondary goals were to measure the 
standalone performance of ProstatID and measure the impact on the 
intended users’ detection accuracy, and test if the use of AI would reduce 
unnecessary biopsies. While data from this study has already been in 
part published,2 this work further evaluates these data, particularly in 
the context of our recommendations on study design and reporting. In 
addition, more comprehensive details of the ProstateID AI algorithm are 
presented. 

The primary performance endpoint was to measure changes in AUC 
in a multiple reader, multiple case (MRMC) prostate MRI study 
employing ProstatID. This was planned as a multiple reader case level 
analysis without and with use of the ProstatID algorithm, with an 
additional FROC analysis at the biopsy points and a standalone lesion 
level analysis of ProstatID. To this means, a power analysis was first 
performed estimating an experiment with 7 readers and 148 cases being 
sufficient to detect a difference of 0.05 ROC AUC and achieve a power of 
0.80, further based on the assumption that half the cases would be 
positive and half negative. To be conservative, a total of 9 readers were 
selected from 6 institutions and with varying experience with prostate 
MRI (Table 1, median 3 years, range less than 1 year to 10 years) to 
evaluate 150 retrospective cases of bi-parametric prostate MRI (bpMRI) 
established prior to vendor algorithm development and training. In 
keeping with our suggestions, these cases were stratified and sampled 
from a larger data set of approximately 2000 retrospective cases from 6 

contributing sites and 12 machine types (both 1.5 and 3T) so as to end up 
with a near equal mix of normal, suspicious negative, and suspicious 
positive cases, with an approximate 40 % positive rate. In all cases 
suspicious lesions were validated by biopsy results (see Truthing 
Methods below). These data are summarized in Tables 2 and 3. All sites 
contributing data for this retrospective study followed their local IRB 
guidelines. 

Readers were blinded to patient results and instructed to interpret all 
150 bpMRI cases (T2 weighted (T2w), diffusion weighted (DWI), 
apparent diffusion coefficient (ADC) map) according to PI-RADS v 2.1, 
using their preferred local DICOM viewer. After a washout period of at 
least 30 days, the readers were instructed to re-interpret all 150 cases 
(presented in a different order), this time with the assistance of output 
from the ProstatID algorithm. This assistance was presented to the 
readers as an additional registered color-coded image set of predicted 
malignancy risk overlaid on standard axial T2w imaging that they could 
utilize and interpret as they wished, similar to that shown in Fig. 1. In 
the majority of cases the patient’s prostate specific antigen (PSA) level 
was known for both reads, and the readers had access to this 
information. 

Truthing methods 

Biological truth 
Our reference standard for clinically significant prostate cancer was 

detection of Gleason grade ≥7 prostate cancer biopsy points on in-bore 
(n = 57), US/MR fusion (n = 32), and/or cognitive US/MR fusion (n =
17) biopsy. Our reference standard for “negative” were positive MRI for 
suspicious lesion (by radiologic interpretation) but negative biopsy 
(Gleason grade <7), acknowledging the unavoidable caveat that biopsy 
is an imperfect process and it is possible biopsy could miss the intended 
MR abnormality yielding a false negative. The cases used in this clinical 
study, however, had image guided biopsy correlation using either in- 
bore (MRI) or US/MR fusion to keep the targeting error to less than 3 
mm, thereby minimizing such potential false negative errors. “Positive” 
were lesions with positive biopsy confirmation. Our reference standard 
for "normal patient cohorts" was the consensus case review opinion of 
four additional blinded radiologists, with at least 15 years of experience 
in interpreting prostate MRI or an academic fellowship where substan
tial biological truth data was collected, who agreed that the patient’s 
MRI was not suspicious for csPCa. 

Scoring 
The scoring criteria used to determine both the physician and CADe/ 

CADx clinical performance was measurement of the physical overlap or 
concurrence of the sub-volume of the physician’s described region of 
suspicion to the sub-volume of the reference standard to the Truth Table, 
a volumetric mapping of the location of all suspect lesions (with their 

Table 1 
Study reader practice type, number of years’ experience interpreting prostate 
MRI, and change in AUC for ProstatID assisted read.  

Reader # Practice Type Years Interpreting 
pMRI 

Baseline AUC Δ AUC 

1 Hospital Based 2 0.70 0.04 
2 University 3 0.63 0.08 
3 Private 

Practice 
4 0.72 0.06 

4 Private 
Practice 

1 0.42 0.09 

5 Hospital Based 4 0.76 -0.02 
6 University 10 0.64 0.10 
7 Private 

Practice 
2 0.74 0.04 

8 Private 
Practice 

8 0.74 0.00 

9 University 2 0.72 0.02  
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biopsy results hidden from readers and CADe/CADx). This Truth Table 
for the almost 1000 case dataset used (a subset of which is this 150 case 
study) consisted of malignant, benign, and normal tissues that were 
catalogued from carefully curated biopsy locations and clinical reports 
provided by the sources for each examination. All biopsy sites were a- 
priori chosen based on an expert panels’ recommendation (consensus of 
highly trained academic radiologists specializing in prostate cancer 
diagnosis), who conservatively biopsied every suspicious point, leading 
to MRI-guided points that yielded a mix of negative and positive for 
cancer. The readers and AI were measured against these truth points 
with both the readers and AI evaluated against all of the lesion sites they 
independently chose (thus a full “all lesion” analysis as previously 
described). In the FROC lesion analysis, as per Part I,1 if the reader or AI 
under test chose a point other than one of the a-priori points with known 
biological truth, they were not evaluated for this point in the lesion-only 
analysis because no biological ground truth data existed with which to 
measure them. This was the same with the modified case level analysis 
as only the biological ground truth points and their resulting true 
PI-RADS case score were used. 

To obtain accurate reader assessment, the participating physicians 
were provided a computerized scoring sheet with the numbered patient 
ID, age, and PSA (if available), as well as columns of pull-down locali
zation choices as described above which identify which sub-region of the 
prostate the centroid of the lesion was located. They were also instructed 
to answer whether their interpretation would result in an action, namely 
biopsy, which is the standard of care for follow-up to lesion classification 
providing it meets the interpreting physician’s threshold. Note that this 
does vary amongst physicians. Further, each reader was instructed to use 
a unique row within the scoring sheet to describe each unique lesion for 
each patient. If there were no lesions or only one lesion was described, 
only one row would be completed for that patient. These scoring 
spreadsheets describing their chosen location of the lesion(s) centroid(s) 
were used for evaluating the accuracy of the physician interpretations to 
those of the Ground Truth table. This was accomplished using the 
overlap or concurrence of the physician-chosen sub-volume to that of 
the Truth Table sub-volume and its ground truth biopsy results; positive 
or negative for cancer. If the physician did not identify a lesion that was 
labeled as a true positive in the Truth Table, then the physician was 
assigned a false negative. Alternatively, if the physician indicated a 
lesion that was labeled as a true negative in the Truth Table, then the 
physician was assigned a false positive. This process continued for every 
lesion of every patient as compared to the Truth Table. 

Biopsy decisions 

To test if the use of ProstatID would reduce the decisions to biopsy a 
benign outcome, a mixed effects analysis was used. Fixed effects were 
the true positive state (outcome) and the use of ProstatID (modality). 
Random intercepts were included for each reader and each patient case. 
The response variable to predict was the decision to biopsy. 

Table 2 
Summary of scanner types, field strengths, imaging parameters and patient demographics used in the clinical study.  

Manufacturer/Field 
Strength 

Philips 1.5T Philips 3.0T Siemens 3.0T GE 1.5T GE 3.0T Overall 

Scanner Models Achieva, Ingenia Achieva, Ingenia, 
Intera 

Magnetom Vida, Skyra, TrioTim, 
Verio 

Signa HDxt, 
Optima MR450w 

Discovery 750w  

T2W       

Repetition Time (ms) 2975 [2650-6869] 4434 [3752-6435] 4780 [3000-10500] 2975 [2650-6869] 9999 [1500- 
13599] 

4434 [1500- 
13599] 

Echo Time (ms) 125 [120-130] 120 121 [97-123] 96 [91-118] 109 [102-115] 120 [91-130] 
Flip Angle (degrees) 90 90 137 [120-160] 90 [90-160] 160 [90-160] 90 [90-160] 
Slice thickness (mm) 4.0 [3.0, 4.6] 3.0 3.0 [3.0-3.8] 3.5 [3.5-4.0] 4.0 3.3 [3.0-4.6] 
Square matrix size (pix) 512 [512-672] 512 [512-576] 320 [320-640] 512 512 512 [320-672] 
In-plane field of view 

(mm) 
200 [160-246] 140 [140-180] 200 [140-220] 200 [180-260] 200 [200-220] 200 [140-260] 

In-plane resolution (mm) 0.391 [0.297- 
0.391] 

0.273 [0.273-0.321] 0.573 [0.281-0.688] 0.391 [0.352- 
0.508] 

0.391 [0.391- 
0.430] 

0.391 [0.273- 
0.688]  

DWI       

Repetition Time (ms) 3360 [2700-4847] 6804 [4000-7036] 4800 [3900-7600] 6000 [3515-6000] 4000 [2000-4877] 4800 [2000-7600] 
Echo Time (ms) 67 [65-81] 52 [51-84] 62 [62-121] 85 [68-87] 72 [68-74] 67 [51-121] 
High b-value (s/mm2) 1400 [1000-1400] 2000 [750-2000] 1500 [800-2000] 1400 1450 [1150-1450] 1400 [750-2000] 
Slice thickness (mm) 4.0 [3.3-4.6] 3.0 [3.0-3.3] 3.5 [3.0-5] 3.0 [3.0-4.0] 4.0 [4.0-4.2] 4.0 [3.0-5.0] 
Square matrix size (pix) 160 [128-256] 256 [128-256] 118 [96-280] 256 256 224 [96-280] 
In-plane field of view (mm) 216 [180-360] 140 [140-180] 200 [169-240] 240 [240-260] 256 [220-256] 200 [140-360] 
In-plane resolution (mm) 1.389 [1.216-1.417] 0.547 [0.547-1.406] 1.695 [0.714-2.255] 0.938 [0.938-1.016] 1.000 [0.859-1.000] 1.287 [0.547-2.255]  

Patients       

Total 44 35 42 11 18 150 
Age (years) 68.5 [50-82] 65 [49-79] 69 [56-86] 63 [45-83] 65.5 [53-74] 67 [45-86] 
With cancer, GS ≥ 7 18 (40.9 %) 16 (45.7 %) 20 (47.6 %) 4 (36.4 %) 9 (50.0 %) 67 (44.7 %) 
Total Without cancer 

Normal cases 
26 (59.1 %) 
15 (34.1 %) 

19 (52.3 %) 
7 (20.0 %) 

22 (52.4 %) 
10 (23.8 %) 

7 (63.6 %) 
4 (36.4 %) 

9 (50.0 %) 
8 (44.4 %) 

83 (55.3 %) 
44 (29.3 %) 

PSA Level (ng/mL) 7.1 [1.3-367.2] 
44 cases 

6.4 [3.9-10.9] 
10 cases 

8.0 [2.0-36.6] 
37 cases 

4.1 [4.0-11.6] 
3 cases 

6.3 [0.4-20.7] 
18 cases 

7.2 [0.4-367.2] 
112 cases (74.7 %)  

Table 3 
Biopsy details for the 150 case dataset used for the clinical study, which included 
a total of 209 pathology proven lesions, 81 of which were true positive (Gleason 
≥7) and 128 of which were false positive (Benign or Gleason 6).  

Breakdown of 150 Case Dataset – Biopsy Data 

Benign Gleason 
6 

Gleason 
7 

Gleason 
8 

Gleason 
9 

Gleason 
10 

Total 

100 28 57 13 9 2 209  

True Positive 
(Gleason ≥7) 

81 

False Positive 
(Gleason <7 or Benign) 

128  
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AI algorithm 

The ProstatID software algorithm consists of six functional steps as 
per the Architecture Design Chart, which is outlined in Fig. 2 and 
summarized below. For the sake of brevity this work focuses on lesion 
detection and classification as well as case-level diagnosis; however, 
such software requires significantly more functionality in order to 
accomplish the required clinical components in a seamless manner. For 
this type of SaaS (Software as a Service) to operate, it requires additional 
functions including (1) automatic detection of a prostate MRI case at its 
cloud-based input; (2) testing to ensure that it is in fact a prostate case, 
that it contains the required series of T2w, DWI, and ADC, that the 
prostate is correctly centered within the field of view with adequate 

image quality and meets the minimum resolution requirements (and can 
send real-time feedback if conditions are not met); (3) case evaluation 
with detection, classification, prostate volume measurement, and rec
ommended PI-RADs (risk) score; (4) report dissemination including 
generating a T2W image set with overlayed cancer probability index in a 
DICOM format, a 3D rendering of the prostate and all lesions, an accu
rate prostate and lesion volume as well as each lesion’s individual PI- 
RADS score and a PI-RADS case score, that are all; (5) sent back to the 
original study within the user’s PACS system; and finally (6) deleting the 
study from the ProstatID database. 

The core of the AI process occurs in Function 3, where segmentation, 
detection and classification are performed (Fig. 3) prior to making any 
cancer prediction. Following appropriate input quality testing, ProstatID 

Fig. 1. Example of ProstatID color-coded overlay on a T2w slice through the mid prostate. Colormap per Table 4, with green predicting benign tissue, and the color 
spectrum toward bright red predicting the highest likelihood of clinically significant cancer. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 2. Diagram of ProstatID workflow.  
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first performs image registrations of the following volumes:  

• Registration of the ADC volume to the T2w volume using a rigid 
transformation  

• Registration of the DWI volume to the ADC volume using a rigid 
transformation 

This registration step implements the mutual information as a cost 
metric that is maximized to best align the moving volume with respect to 
the reference volume. 

ProstatID automatically detects prostate anatomy from the T2w MR 
image of the pelvis. Detection is accomplished by utilizing a 3-D con
volutional neural network (CNN) trained to segment the prostate on T2- 
weighted image volumes. Prostate anatomy is identified by a separate 
image where all prostate-related voxels are first set to one, and all non- 
prostate voxels set to zero. The ProstatID software then automatically 
segments the TZ and CZ as one to differentiate from the PZ. These non- 
PZ anatomies are identified by setting all related voxels to two. 

ProstatID next analyzes the T2-weighted, DWI and ADC MRI data 
and automatically classifies prostate tissue within the T2-weighted MR 
image set. Classification is accomplished utilizing an ensemble model
ling approach where various base models are used during the process of 
cancer prediction. The boosted parallel random forest (bpRF – patent- 
pending) ensemble model (Fig. 4) seeks the wisdom of the crowd and 
aggregates the prediction of each base model using the majority voting 
or the weighted average techniques. 

In order to make a final and most accurate prediction with less 
generalization error for the data in which we lack biological ground 
truth, ProstatID’s inference unit acts as a single model and takes into 

consideration the outcomes of multiple base models including five 
random forest (RF) models within itself. It was trained on 1538 patient 
cases, nearly 1000 of those less 150 cases set-aside for testing, with 
proven cancerous and/or benign diagnoses that were manually anno
tated/segmented. The classification step operates in a 2-D slice-by-slice 
fashion, with a set of image features as input to the RF models. These 
image features are generated from the T2-weighted, DWI, and ADC 
image data for the regions identified by the segmentation. Tissue is 
classified, voxel to voxel, on a continuous scale between zero and one, 
inclusive. A classification of zero indicates a low likelihood of prostate 
cancer. A classification of one indicates a high likelihood of prostate 
cancer. RF models were trained for both 1.5T and 3.0T field strengths. 

The numerical classification scheme is translated into visual output 
in the form of a translucent, heatmap-type of colorized probability map, 
with the probability weighting as indicated in Table 4, with the 
demonstrated green hue representing 0 % probability of csPCa, a color 
progression from green to red through yellow indicating increasing 
probability of csPCa, and the demonstrated red hue 100 % probability of 
csPCa. This translucent colormap is overlaid onto the axial T2-weighted 
slices to indicate the relative probability of csPCa within the prostate 
tissue (Fig. 1). This colorization is intended to assist the physician in 
following the PI-RADS v2.1 Radiology Interpretation Guide (although in 
this case the bpMRI pathway as ProstatID does not incorporate the dy
namic contrast enhanced (DCE) imaging inclusive in mpMRI) to grade 
the suspect lesions according to the definitions therein while simulta
neously providing AI input into lesion grading. Additionally, the algo
rithm generates a three-dimensional view of high probability suspect 
lesions within a translucent volume representation of the prostate as 
shown in Fig. 5. 

Fig. 3. Diagram breaking Function 3 of ProstatID: segmentation, registration, feature calculation & classification.  

Fig. 4. The boosted parallel random forest (bpRF) model architecture used by ProstatID for this study. bpRF is an ensemble of various base models. The ensemble 
model seeks the wisdom of the crowd and aggregates the prediction of each base model to make a final prediction with less generalization error. bpRF implements a 
chain of estimators that starts with an AdaBoost model encapsulating multiple bagging classifiers that are boosted sequentially during training. Each bagging 
classifier has 5 parallel random forests acting on random slices of data. 
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Results 

Diagnostic performance: reader case level 

The reader-averaged ROC curves are shown in Fig. 6 for the unas
sisted case level read (without CADe/CADx) and the read with CADe/ 
CADx, with unassisted AUC values ranging 0.584 – 0.761 and AI assisted 
AUC values ranging from 0.637 – 0.799, netting average values of 0.672 
and 0.718 respectively as shown in Table 5. This yielded an estimated AI 

assisted improvement in AUC for rating true positive patients of 0.046, 
which is statistically significant at the level α = 0.05. 

Examining the individual AUC curves for the nine readers, there are 
clear differences in baseline reader performance (Fig. 7, Table 2), which 
does not necessarily seem to correlate with years’ experience. As can be 
seen, however, the assistance of AI provided a noticeable improvement 
in AUC in 7 of 9 readers, with AUC improvements ranging from 0.018 – 
0.096. In one reader the AUC was near identical for both, and in another 
reader there was a slight decrease in AUC with AI assistance (-0.019). 
Interestingly, both the least (#4) and the most (#6) experienced readers 
were the two in whom the best AUC improvement were seen (0.09 and 
0.10, respectively), with variable but lesser improvement in the other 
readers. 

Lesion-level detection performance without and with CAD 

The free-response ROC (FROC) curves for readers at all biopsied sites 
without and with use of CADe/CADx are shown in Fig. 8. The use of AI 
yielded an increase in performance, with θ increasing from 0.405 to 
0.453. This was statistically significant at the level α = 0.05 (Table 6). As 
stated above and elaborated in Part I,1 evaluating reader performance at 
the lesion level may not in general be practical unless biopsy points are 
taken at all suspicious regions. Only then would those many points 

Table 4 
Colorized Translucent Probability Legend ProstatID algorithm.  

Fig. 5. ProstatID generated 3D transparent outline of the prostate gland with 3D solid tumor outline spatially located within.  

Fig. 6. ROC curve averaged across readers for assigning a case level PI-RADS 
rating to patients for the unassisted read (without ProstatID) and the read 
with ProstatID. The difference was statistically significant (α = 0.05). 

Table 5 
Multiple-reader multiple-case study case level estimate of area under the ROC 
curve (AUC) for the unassisted read (without CAD) and the read with CAD.  

Metric AUC 95 % CI p-value 

AUC1st Read (without CAD) 0.672 [0.584, 0.761] - 
AUC2nd Read (with CAD) 0.718 [0.637, 0.799] - 
ΔAUC = AUC2nd Read - AUC1st Read +0.046 [0.010, 0.081] 0.0149  
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represent an appropriate level of mixed positive and negative ground 
truth points to which the readers and/or AI could be evaluated. 

Diagnostic performance: standalone AI all tissue 

The standalone performance of the ProstatID CADe/CADx algorithm 
across all prostate tissues is shown in Fig. 9. This curve was constructed 
using predictions from the 3 mm grid method which we concluded was a 
method that most closely approximates human interpretation for 
detection and localization of lesions. This result most directly compares 
with the case level reader results in Figs. 6 and 7. The standalone AUC of 
0.929 shows that the AI has an ability to distinguish cancerous tissues 
from all negative tissues (consisting of normal tissue and benign lesions) 
superior to all radiologists measured in this study (where best AUC was 
0.759). 

As was done for the readers, the standalone FROC performance of 
ProstatID was determined at all biopsy sites and is shown in Fig. 10. 
When compared to the readers’ unassisted read (Fig. 8), ProstatID per
formed significantly better at detecting and rating cancerous lesions, 
with a θ of 0.706 vs. 0.405 (Δθ = +0.301, statistically significant at the 
level α = 0.05). 

Diagnostic performance: standalone AI lesion level 

The standalone lesion level performance of the AI at all biopsied 
locations, retrospectively provided by the panel of experts along with 
their biopsy results, of the same clinical data set is shown in Fig. 11, with 
an AUC of 0.710. This demonstrates that the AI has good ability to 
distinguish cancerous from benign tissues. 

Fig. 7. Individual reader case level ROC curves from the clinical study. Blue represents the unassisted read and red represents the read using ProstatID. The red and 
blue dots indicate the sensitivity/specificity of the readers’ decision to biopsy MR suspicious lesion. AUC values are trapezoidal area under the ROC curve. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Reduction of biopsies of benign tissues 

The model accuracy was 84.3 % using the mixed effects model for 
predicting the decision to biopsy. The readers were 1.06 times more 
likely to biopsy a benign lesion when not using ProstatID, however, the 
interaction of using ProstatID was not considered significant (p =
0.590). The readers were 1.30 times more likely to biopsy a cancerous 
lesion when using ProstatID, however, the interaction of using ProstatID 
was only marginally significant (p = 0.058). Therefore, utilizing 

ProstatID achieved a 6 % decrease in biopsies of benign tissues and a 30 
% increase in biopsies of malignant tissues (detection of csPCa). 

Discussion 

The clinical study presented in this Part II manuscript describes a 
multiple-reader multiple-case (MRMC) design using an enriched dataset 
of 150 cases from 6 sites, encompassing 12 MR machine types at both 
1.5T and 3T, with 9 readers of varying experience from 6 different sites, 
ultimately evaluating reader diagnostic performance without and with 
use of a CADe/CADx device. While some of the fundamental results of 
this study have recently been published elsewhere,2 a compelling 
objective of this manuscript was to utilize this MRMC data as a blueprint 
for implementing the recommendations regarding the construction and 
reporting of prostate AI studies as proposed in the companion Part I 

Fig. 8. Free-Response ROC (FROC) curves at all biopsy data points averaged 
across readers for detecting clinically significant cancerous lesions for the un
assisted read (without ProstatID) and the read with ProstatID. The difference 
was statistically significant (α = 0.05). 

Table 6 
Free-response ROC (FROC) results at all biopsy points for the unassisted read 
(without CAD) and the read with CAD.  

Metric θ 95 % CI p-value 

θ 1st Read (without CAD) 0.405 [0.266, 0.544] - 
θ 2nd Read (with CAD) 0.453 [0.306, 0.599] - 
Δ θ = = θ 2nd Read - θ 1st Read +0.048 [0.007, 0.088] 0.024  

Fig. 9. ROC curve for the ProstatID output evaluated at all pixels (whole 
prostate, modified case level) using the grid method described. 

Fig. 10. Corresponding Free-Response ROC (FROC) curves at all biopsy points 
for the ProstatID algorithm prostate cancer prediction model, comparable to the 
average FROC of the readers (Fig. 8). The jackknife alternate FROC (JAFROC) 
performance metric (θ) is shown. 
Note: The alternative FROC (AFROC) method of plotting is used so that both 
curves (Figs. 8 and 10) scale between zero and one on the y-axis. When 
compared to the readers’ unassisted read, ProstatID performed better at 
detecting and rating clinically significant cancerous lesions (Δθ = +0.301). This 
difference in performance is statistically significant at the 5 % level (p = 0.029). 

Fig. 11. ROC curve for the ProstatID output evaluated at all biopsy locations 
(lesion level). The 95 % confidence bounds (shaded) were determined using 
bootstrapping. The yellow and red dots represent the operating points for the 
start of the yellow and red color in the AI’s color probability map, respectively 
(Fig. 1, Table 4). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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review.1 While Part I was intended to explore the present landscape of 
prostate AI and discuss how to evaluate and interpret the performance of 
such algorithms, this clinical study attempts to put the Part I recom
mendations into practice. It furthermore expands on some of the clinical 
data, particularly evaluating AI impact on decision to biopsy and 
providing more complete details of the AI algorithm. As CADe/CADx 
technologies increasingly find their way into the reading room, we 
believe it is essential that end users be equipped with the background to 
understand the advantages and limitations of these CADe/CADx tools in 
order to report and compare studies in a rigorous and standardized 
fashion. 

One important, but often confusing principle we emphasize in Part I 
is the distinction between reporting results on a “case level” or “lesion 
level” detection basis. The former is more representative of clinical case 
level patient diagnosis, and for a radiologist interpretation is typically 
the highest PI-RADS score for that patient; this is how reader perfor
mance is typically evaluated in the literature. In this study design, the 
reader case level diagnosis was evaluated both with and without the 
reader utilizing CADe/CADx assistance. True lesion level analysis, on 
the other hand, analyzes only identified lesions where truth exists. This 
requires a-priori knowledge of where the known lesions are, which can 
be achieved in practice when taking multiple biopsy points from a pa
tient, possibly some targeted and other via systematic core biopsies. The 
resulting biopsy truth data can then be used to evaluate a reader based 
upon the methods described above and in Part I. Thus a true and com
plete lesion level analysis of AI and readers is typically only performed 
through analysis of all known lesions where truth exists, as we have 
done using the FROC method. As highlighted in Part I, such an AI lesion 
level analysis results in a very different and almost certainly less 
impressive curve (FROC) as compared to the ROC curve analysis. Note 
also that the grid method of obtaining a ROC analysis of the AI is 
comparable to the ROC analysis of readers evaluated on a case basis with 
ground truth biopsy data. We strongly maintain, however, that lesion 
level analysis is the best and most stringent way for researchers and 
vendors to report and compare standalone cancer detection results. 

Addressing the primary study goal of whether the ProstatID algo
rithm improved radiologist diagnostic performance, case level analysis 
was performed for all 9 readers without and with use of the ProstatID 
algorithm, with an additional FROC analysis at each of the 9 readers 
selected biopsy points. Without ProstatID, mean ROC for the 9 readers 
was 0.672. This is somewhat less than seen in two recent PI-RADs v2 
meta-analyses, which arrived at values of 0.86-0.87.3,4 These differences 
may relate to the known large variability in PI-RADS reads,5,6 the fact 
that greater than 40 % of the dataset used for this study was at 1.5T, 
which is known to be of lower sensitivity than 3T,3 and the fact that only 
bi-parametric MR was used. Regardless, case based ROC analysis 
demonstrated statistically significant improvement in reader perfor
mance with the use of ProstatID, with mean ROC increasing to 0.761. 
Similarly, FROC analysis at the biopsy data points demonstrated a sta
tistically significant improvement with the addition of CADe/CADx. 

These are important and exciting results, suggesting such AI algo
rithms can be easily incorporated into the reading room to improve 
diagnostic accuracy. Consider also that all readers had no prior experi
ence with ProstatID, as this tool was simply introduced as an additional 
set of images (cancer probability colormap overlaid on T2 images) that 
could be utilized as the reader saw fit in their review of the MR images in 
order to help arrive at a diagnosis. Thus there was no attempt to 
determine how or when the radiologist decided to let the ProstatID in
formation influence their interpretation, however it is clear that it did so 
frequently enough to achieve positive statistical significance. 

As might be expected, there was a variable degree of improvement in 
case level AUC with the use of ProstatID across the readers, with 7 of 9 
demonstrating improvement, one being unchanged, and one showing a 
minimal decrease in AUC. This may perhaps relate to how much trust 
each reader placed in ProstatID, and it would be interesting to know how 
performance evolves as readers gain more experience with ProstatID. It 

is interesting to note that both the readers with the least and most 
experience had the largest increases in AUC, suggesting that algorithms 
such as ProstatID may be able to improve diagnostic accuracy among 
across experience levels, one of the expectations for AI.7 In a similar 
vein, Litjens 8 performed a sub-analysis based on reader experience, also 
concluding that both more and less experienced readers achieved similar 
gains with AI. 

Other comparable studies examining whether AI can improve radi
ologist’s reads include a multiple-reader, multiple case study by Winkel 
et al. 9 evaluating 7 readers using 100 PROSTATEx Challenge cases 10 

without, and then with AI assistance. Their AUC demonstrated a sta
tistically significant increase from 0.84 to 0.88 – similar in magnitude to 
that seen in this study. These authors also saw an increase in inter-reader 
agreement when incorporating AI. A somewhat different approach to 
this concept 8 evaluated 7 radiologist’s PI-RADS scoring alone versus a 
“combination” score that was a mathematical combination of PI-RADS 
score and a continuous likelihood score between 0 and 1 as deter
mined by an AI algorithm for each lesion. This yielded an AUC increase 
from 0.78 – 0.88. Note that both of these studies were performed 
exclusively at 3T. 

Examining next the secondary goal of ProstatID standalone perfor
mance, the all tissue AUC was 0.929, which at first glance appears 
extremely good. Recall, however, that such an analysis is heavily biased 
by the typically large volume of normal tissue as compared to the much 
smaller volume of abnormal tissue, and thus such seemingly high AUC 
values can be misleading and must be interpreted cautiously. Never
theless, this provides the most direct comparison with case level reader 
results, where the best AUC among our readers was 0.759, demon
strating ProstatID has an ability to distinguish benign from cancerous 
tissues superior to radiologists. Examining the lesion level standalone 
performance of ProstatID, which we advocate as the best and most 
stringent way to evaluate AI, AUC was 0.710. This demonstrates that AI 
has good ability to distinguish cancerous from benign tissues, bearing in 
mind that the biopsy locations were those areas deemed suspicious 
enough by expert radiologist Panels to recommend for biopsy; hence all 
negative biopsies were false positives of those contributing radiologists. 
Additionally, the expert panel concurred that all tissues NOT biopsied 
were normal or tissue not sufficiently suspicious to warrant biopsy. It 
was this data provided by the contributing sites that also provides per
formance of the contributing radiologists. 

It is difficult to compare the ProstatID standalone performance to 
other published AI algorithms, in part due to the heterogeneity of the 
datasets and techniques evaluated, and in part because studies often do 
not report basic facts such as whether reported AUC is on a case level or 
lesion level. A recent meta-analysis screened 392 citations to arrive at 12 
“relevant and pertinent” machine learning studies for prostate cancer,11 

of which only 4 were deep learning and demonstrated a pooled AUC of 
0.78 (95 % confidence interval 0.69 – 0.86). Examining these 4 studies 
more closely, one 364 patient study achieved an AUC of 0.91,12 however 
the authors provide little information on the statistical details, and this 
may very well be a case level analysis. Another study of 140 patients 
achieved an AUC of 0.726.13 This was a “classification” study where the 
lesions were fed into the AI, without algorithm “detection”. Given this 
methodology, this appears to be a lesion level analysis, but again this is 
not clearly stated. Another approach,14 performed on an open access 
training dataset (Cancer Imaging Archive PROSTATEx2train) and also 
not a detection algorithm demonstrated an AUC of 0.81. Again, this 
likely reflects a lesion level analysis, however this is not explicitly clear. 
The final study in this series, another non “detection” algorithm that was 
part of the PROSTATEx Challenge,15 achieved an AUC of 0.73, again 
presumably but not clearly stated lesion level analysis. Of note, none of 
these studies performed a FROC analysis. This heterogeneity in how the 
AUC is determined and reported is one of the issues that needs stan
dardization in order to more effectively compare standalone AI perfor
mance across different techniques. 

The other secondary goal was to determine how ProstatID impacted 
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the incidence of reader request for biopsy. For this determination there 
was no explicit guidance to the readers, and it was essentially a sub
jective call as to whether they considered a lesion suspicious enough to 
recommend biopsy. Such decisions may perhaps also integrate factors 
such as PSA level and image artifacts, however the call was left to the 
reader, and to that effect can perhaps be considered a metric of certainty 
in which the evaluating radiologist trusts their diagnosis. While this is 
not something we have seen evaluated in similar studies, the use of 
ProstatID did increase the incidence of readers requesting a biopsy of 
malignant tissue by 30 %, which nearly achieved statistical significance. 
Conversely, there was no statistical significance in the 6 % decreased 
incidence of requesting biopsy of benign tissue. This suggests that 
difficult to assess or missed regions that ProstatID identifies as suspi
cious are upgraded in suspicion by the reader, and this may be a large 
factor contributing to the increase in AUC for reads performed with 
ProstatID. It is unknown whether increased reader experience with 
ProstatID would further improve diagnosis and increase the incidence of 
requesting biopsy of malignant tissue as the algorithm were perhaps 
more trusted, and this might be an interesting next step to evaluate. 

There are several weaknesses of this study. First, only bi-parametric 
MR data was used, which some studies indicate decreases sensitivity.7 

This largely relates to the added complexity of incorporating contrast 
enhanced imaging into the AI model, something that is currently in 
development for the ProstatID algorithm. Not requiring gadolinium 
contrast, however, does have the advantages of decreased risk of adverse 
contrast reactions and potential for gadolinium deposition, less cost, and 
time savings.7 Second, this was a relatively small study of only 150 
cases. This is, however, a typical size for similar studies. There is also the 
issue of “washout”, as the same studies were interpreted twice by all 
readers. There was a minimum 30 day “washout period” between the 
two reads, and the cases were presented in a different order, but it is 
possible that memory of the cases impacted results. Another concern 
relates to the possibility of a false negative biopsy in an MR suspicious 
area due to biopsy targeting error. While such false negatives are always 
possible, we believe that our exclusive use of in bore MR or MR/US 
fusion biopsy in this study provides as precise as is physically possible 
localization. Yet another issue is that of proving “negative” tissue. This 
pitfall plagues all such studies, as truly defining negative is an impos
sible task. Without complete explant pathology, it can never be known 
that tissue called negative by the reader or algorithm is truly negative. 
As a best attempt to circumvent this, our “normal cohort” population 
was a consensus opinion by an expert panel of 4 radiologists that a 
non-suspicious study was in fact negative. Next, only a single FDA 
cleared algorithm was evaluated (ProstatID), without any comparison to 
other available algorithms. Finally, algorithm gridding was only per
formed at 3 mm, and as alluded to, there may very well be differences in 
performance depending on this level of granularity. 

Future goals include refinement and continued training of the 
ProstatID algorithm, including the incorporation of contrast enhanced 
data into the algorithm. Additional studies on this same dataset, as well 
as on other curated and perhaps standardized datasets using a refined 
ProstateID algorithm along with other FDA cleared algorithms will allow 
for comparison between AI approaches, and provide important infor
mation about incorporating such algorithms into clinical workflow. 

Conclusion 

This multiple case, multiple reader study evaluated reader 

performance for the diagnosis of clinically significant prostate cancer, 
both without and with use of the newly FDA cleared CADe/CADx system 
ProstatID. The addition of this AI tool into radiologist workflow lead to 
significant improvement in reader performance based on ROC and FROC 
analysis, as well as increasing the incidence of requesting biopsy of 
malignant foci by 30 %. This suggests AI augmentation of prostate 
interpretation improves diagnostic accuracy and will likely play an 
increasing role in the diagnosis of prostate cancer with MRI. While these 
results are important and compelling, a fundamental goal of this work 
was to incorporate and model the Part I recommendations 1 regarding 
how to construct, analyze and report prostate AI studies so that they can 
be better and more easily evaluated and compared. 

References 

1. Maki JH, Patel NU, Ulrich EJ, Dhaouadi J, Jones RW. Part I: Prostate Cancer 
Detection, Artificial Intelligence for Prostate Cancer and How We Measure 
Diagnostic Performance: A Comprehensive Review. Curr. Probl. Diagn. Radiol. 
https://doi.org/10.1067/j.cpradiol.2024.04.002. 

2. Anderson MA, Mercaldo S, Chung R, et al. Improving prostate cancer detection with 
MRI: a multi-reader, multi-case study using Computer-Aided Detection (CAD). Acad 
Radiol. 2022. https://doi.org/10.1016/j.acra.2022.09.009. 

3. Zhang L, Tang M, Chen S, et al. A meta-analysis of use of Prostate Imaging Reporting 
and Data System Version 2 (PI-RADS V2) with multiparametric MR imaging for the 
detection of prostate cancer. Eur Radiol. 2017;27(12):5204–5214. https://doi.org/ 
10.1007/s00330-017-4843-7. 

4. Zhen L, Liu X, Yegang C, et al. Accuracy of multiparametric magnetic resonance 
imaging for diagnosing prostate Cancer: a systematic review and meta-analysis. BMC 
Cancer. 2019;19(1):1244. https://doi.org/10.1186/s12885-019-6434-2. 

5. Rosenkrantz AB, Ginocchio LA, Cornfeld D, et al. Interobserver reproducibility of the 
PI-RADS version 2 lexicon: a multicenter study of six experienced prostate 
radiologists. Radiology. 2016;280(3):793–804. https://doi.org/10.1148/ 
radiol.2016152542. 

6. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data 
system version 2.1: 2019 update of prostate imaging reporting and data system 
version 2. Eur Urol. 2019;76(3):340–351. https://doi.org/10.1016/j. 
eururo.2019.02.033. 

7. Turkbey B, Haider MA. Artificial intelligence for automated cancer detection on 
prostate MRI: opportunities and ongoing challenges, from the AJR special series on 
AI applications. Am J Roentgenol. 2022;219(2):188–194. https://doi.org/10.2214/ 
ajr.21.26917. 

8. Litjens GJS, Barentsz JO, Karssemeijer N, et al. Clinical evaluation of a computer- 
aided diagnosis system for determining cancer aggressiveness in prostate MRI. Eur 
Radiol. 2015;25(11):3187–3199. https://doi.org/10.1007/s00330-015-3743-y. 

9. Winkel DJ, Tong A, Lou B, et al. A novel deep learning based computer-aided 
diagnosis system improves the accuracy and efficiency of radiologists in reading 
biparametric magnetic resonance images of the prostate: results of a multireader, 
multicase study. Invest Radiol. 2021;56(10):605–613. https://doi.org/10.1097/ 
rli.0000000000000780. 

10. Litjens G, Debats O, Barentsz J, et al. “ProstateX challenge data”, the cancer imaging 
archive. Published 2017. Accessed August 15, 2022. https://wiki.cancerimaging 
archive.net/pages/viewpage.action?pageId=23691656. 

11. Cuocolo R, Cipullo MB, Stanzione A, et al. Machine learning for the identification of 
clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. 2020;30 
(12):6877–6887. https://doi.org/10.1007/s00330-020-07027-w. 

12. Le MH, Chen J, Wang L, et al. Automated diagnosis of prostate cancer in multi- 
parametric MRI based on multimodal convolutional neural networks. Phys Med Biol. 
2017;62(16):6497–6514. https://doi.org/10.1088/1361-6560/aa7731. 

13. Zhong X, Cao R, Shakeri S, et al. Deep transfer learning-based prostate cancer 
classification using 3 Tesla multi-parametric MRI. Abdom Radiol. 2019;44(6): 
2030–2039. https://doi.org/10.1007/s00261-018-1824-5. 

14. Abraham B, Nair MS. Computer-aided grading of prostate cancer from MRI images 
using Convolutional Neural Networks. J Intell Fuzzy Syst. 2018:1–10. https://doi. 
org/10.3233/jifs-169913. Preprint(Preprint). 
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